Abstract
In this paper, we propose a new method to measure the probabilistic robustness of stochastic jump linear system with respect to both the initial state uncertainties and the randomness in switching. Wasserstein distance which defines a metric on the manifold of probability density functions is used as tool for the performance and the stability measures. Starting with Gaussian distribution to represent the initial state uncertainties, the probability density function of the system state evolves into mixture of Gaussian, where the number of Gaussian components grows exponentially. To cope with computational complexity caused by mixture of Gaussian, we prove that there exists an alternative probability density function that preserves exact information in the Wasserstein level. The usefulness and the efficiency of the proposed methods are demonstrated by example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.