Abstract

Greyness, randomness and fuzziness are three inseparable uncertainty factors influencing the safety of a roller compacted concrete dam (RCC dam), which can be regarded as a system reliability problem associated with multiple failure modes. Aiming at the current probabilistic risk analysis of RCC dams, most of the studies limited to single failure mode and single uncertainty. A probabilistic risk assessment method for dam under Grey-Stochastic-Fuzzy (GSF) uncertainty is proposed to consider the randomness and greyness of parameters and the fuzziness of the failure criteria. First, the fault tree model of an RCC dam is established based on Fault Tree Analysis (FTA). Then, bootstrap repeated sampling is embedded into grey system theory to quantify the grey properties of stochastic variables. The Latin Hypercube Sampling (LHS) function is improved to compensate for the inability of describing the fuzzy failure criteria. Finally, considering the correlated multiple failure modes, the proposed method is applied to analyze the parameter sensitivity and failure probability of the LDL dam in China. The results show that the proposed method is a high-efficiency, fast-convergence and more scientific method with reasonable outputs compared to common uncertainty probability analysis methods. The proposed method also provides an effective basis for the structural design and safety analysis of a concrete dam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.