Abstract
In this work, a versatile mathematical framework for multi-state probabilistic modeling of Resistive Switching (RS) devices is proposed for the first time. The mathematical formulation of memristor and Markov jump processes are combined and, by using the notion of master equations for finite-states, the inherent probabilistic time-evolution of RS devices is sufficiently modeled. In particular, the methodology is generic enough and can be applied for $N$ states; as a proof of concept, the proposed framework is further stressed for both two-state RS paradigm, namely $N=2$, and multi-state devices, namely $N=4$. The presented I-V results demonstrate in a qualitative and quantitative manner, adequate matching with other modeling approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.