Abstract

In this paper we prove a stochastic representation for solutions of the evolution equation $$\partial _t \psi _t = \frac{1}{2}L^ * \psi _t $$ where L ∗ is the formal adjoint of a second order elliptic differential operator L, with smooth coefficients, corresponding to the infinitesimal generator of a finite dimensional diffusion (X t ). Given ψ 0 = ψ, a distribution with compact support, this representation has the form ψ t = E(Y t (ψ)) where the process (Y t (ψ)) is the solution of a stochastic partial differential equation connected with the stochastic differential equation for (X t ) via Ito’s formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.