Abstract

We propose a probabilistic construction for the solution of a general class of fractional high-order heat-type equations in the one-dimensional case, by using a sequence of random walks in the complex plane with a suitable scaling. A time change governed by a class of subordinated processes allows to handle the fractional part of the derivative in space. We first consider evolution equations with space fractional derivatives of any order, and later we show the extension to equations with time fractional derivative (in the sense of Caputo derivative) of order $$\alpha \in (0,1)$$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.