Abstract

A Feynman–Kac type formula for relativistic Schrödinger operators with unbounded vector potential and spin 1=2 is given in terms of a three-component process consisting of a Brownian motion, a Poisson process and a subordinator. This formula is obtained for unbounded magnetic fields and magnetic fields with zeros. From this formula an energy comparison inequality is derived. Spatial decay of bound states is established separately for growing and for decaying potentials by using martingale methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.