Abstract
Forecast reconciliation is an important research topic. Yet, there is currently neither a formal framework nor a practical method for the probabilistic reconciliation of count time series. This paper proposes a definition of coherency and reconciled probabilistic forecast, which applies to real-valued and count variables, and a novel method for probabilistic reconciliation. It is based on a generalization of Bayes’ rule and can reconcile real-value and count variables. When applied to count variables, it yields a reconciled probability mass function. Our experiments with the temporal reconciliation of count variables show a major forecast improvement compared to the probabilistic Gaussian reconciliation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.