Abstract
SummaryDepending upon sensing attributes, wireless sensor networks (WSNs) are classified as event driven, time driven, and query driven. In a given surveillance area, approximation of query generation process using uniform probability mass function (PMF) model seems to be reasonable in aggregate terms based on observations extracted from lifetime span of WSNs. However, owing to random generation aspects of query and the associated temporal variations, the Poisson distribution‐based model appears to be more appropriate to resemble the realistic query generation pattern. Invariably, in all the sensor network architectures, the energy management requires an important consideration owing to limited energy resources. For the optimal utilization of energy resources, we propose fuzzy c‐means (FCM) algorithm to form clusters in a hierarchical network configuration. Network performance is measured in terms of key performance measures, namely, average residual energy status, critical residual energy status (CRES), and number of network nodes that attain the CRES mark. These performance measures are estimated and analyzed for three different PMF models of query generation namely Uniform, Gaussian and Poisson. The merit of deploying FCM algorithm in terms of maintaining much better energy profile of the entire network is discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.