Abstract
Formulae for ζ(2n) andLχ4(2n+ 1) involving Euler and tangent numbers are derived using the hyperbolic secant probability distribution and its moment generating function. In particular, the Basel problem, where ζ(2) = π2/ 6, is considered. Euler's infinite product for the sine is also proved using the distribution of sums of independent hyperbolic secant random variables and a local limit theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.