Abstract
We present a new equilibrium ripple predictor using a machine learning approach that outputs a probability distribution of wave-generated equilibrium wavelengths and statistics including an estimate of ripple height, the most probable ripple wavelength, and sediment and flow parameterizations. The Bayesian Optimal Model System (BOMS) is an ensemble machine learning system that combines two machine learning algorithms and two deterministic empirical ripple predictors with a Bayesian meta-learner to produce probabilistic wave-generated equilibrium ripple wavelength estimates in sandy locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.