Abstract

Zimmerman and Weissenburger’s flutter margin method is widely used to estimate the aeroelastic coalescence flutter speed. In contrast to aeroelastic decay rates, the flutter margin exhibits monotonic decay with respect to airspeed rendering it effective in extrapolating the flutter speed using flight test data conducted at pre-flutter airspeeds. This paper reports the generalization of the Bayesian formulation of the flutter margin method by Khalil et al. developed to tackle measurement and modeling uncertainties. This paper improves the predictive performance of the previous algorithm by incorporating the joint prior of aeroelastic modal frequencies and decay rates among airspeeds in order to better estimate the joint posterior of modal parameters using observational data. The modal parameter prior is constructed using the classical two-degree-of-freedom pitch–plunge aeroelastic model whose system matrices (e.g. structural stiffness and damping matrices) vary randomly. Such joint modal parameter prior enforces statistical dependence among posteriors of modal parameters and the associated flutter margins across airspeeds. Numerical studies demonstrate a considerable reduction of uncertainties on the predicted flutter speed obtained from the generalized Bayesian flutter margin method. This improved algorithm can cut cost by reducing the number of flight tests and better assess the uncertainty against aeroelastic flutter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call