Abstract
The sizes of PV power plants have grown in such a way that their effects on the power system can no longer be neglected. In order to address these issues, grid operators are forced to expand grid connection points, and a power flow analysis considering uncertain renewable generation is required. Thus, a modified probabilistic power flow (PPF) analysis for practical grid planning is suggested in this paper. The regularity and randomness of PV power are modeled by a Monte Carlo-based probabilistic model combining both k-means clustering and the kernel density estimation method. The certain cluster group is selected so as to reflect the severe PV generation scenario, and the chi-square test to represent the $n$ th conservative network planning was suggested. In order to provide the power flow result more effectively, a mapping function of graphic representation based on a significant grid code violation is provided in an automatic PPF tool written by Python scripts. Following this procedure yields a reasonable network design for various renewable energy penetration levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.