Abstract

Mathematical human control models are widely used in tuning manual control systems and understanding human performance. Human behavior is commonly described using linear time-invariant models, averaging-out all non-linear and time-varying effects, which are gathered into the remnant. These models are limited in their capability to capture particular tracking strategies that an experienced subject may learn to use. In this paper, we consider manual control from a different perspective, namely through investigating the probability densities of the tracking error for different regions of the target signal amplitude. Results show that distinct strategies become apparent for compensatory, pursuit and preview tracking tasks. Effects of these strategies are often averaged-out by current models and can only be captured in situation-dependent models. Modeling this systematic human adaptation not captured in linear models could potentially lead to better model fits and explain/reduce part of the remnant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.