Abstract

SummaryPermanent fault displacements (PFDs) because of fault ruptures emerging at the surface are critical for seismic design and risk assessment of continuous pipelines. They impose significant compressive and tensile strains to the pipe cross‐section at pipe‐fault crossings. The complexity of fault rupture, inaccurate mapping of fault location and uncertainties in fault‐pipe crossing geometries require probabilistic approaches for assessing the PFD hazard and mitigating pipeline failure risk against PFD. However, the probabilistic approaches are currently waived in seismic design of pipelines. Bearing on these facts, this paper first assesses the probabilistic PFD hazard by using Monte Carlo‐based stochastic simulations whose theory and implementation are given in detail. The computed hazard is then used in the probabilistic risk assessment approach to calculate the failure probability of continuous pipelines under different PFD levels as well as pipe cross‐section properties. Our probabilistic pipeline risk computations consider uncertainties arising from complex fault rupture and geomorphology that result in inaccurate mapping of fault location and fault‐pipe crossings. The results presented in this paper suggest the re‐evaluation of design provisions in current pipeline design guidelines to reduce the seismic risk of these geographically distributed structural systems. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call