Abstract

In this paper, a multi-objective probabilistic design optimisation approach is presented for reliability and robustness analysis of composite structures and demonstrated on a mono-omega-stringer stiffened panel. The proposed approach utilises a global surrogate model of the composite structure while accounting for uncertainties in material properties as well as geometry. Unlike the multi-level optimisation approach which freezes some parameters at each level, the proposed approach allows for all parameters to change at the same time and hence ensures global optimum solutions in the given parameter design space (for both probabilistic and deterministic optimisations) within a certain degree of accuracy. The proposed approach is used in this study to conduct extensive multi-objective probabilistic and deterministic optimisations (without considering safety factors) on a mono-stringer stiffened panel. In particular, a global surrogate model is developed utilising the computational power of a high-performance computing facility. The inputs of the surrogate model are the omega-stringer geometry and the mechanical properties of the composite material, while the outputs are the fundamental linear buckling load (LBL) and the nonlinear post-buckling strength (NPS). LBL and NPS are obtained via detailed parametric finite element models of the mono-stringer stiffened panel; in the nonlinear model, the interface between the skin and the omega-stringer is modelled via cohesive elements to allow for debonding in the post-buckled regime. Extensive multi-objective optimisations are conducted on the surrogate model using deterministic and probabilistic approaches to examine the omega-stringer geometric parameters mostly affecting the system robustness and reliability. The differences between deterministic and probabilistic designs are highlighted as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.