Abstract
Wormhole routing is a popular routing technique used in network-on-chip. It is efficient but susceptible to deadlock, while deadlock will significantly degrade the network performance of NoC. Most existing adaptive wormhole routings avoid deadlock by reducing the degree of adaptiveness and thus sacrificing network performance. In this paper, we address both deadlock and network performance issues jointly, and propose a probabilistic odd---even (POE) routing algorithm that achieves the minimum packet delivery delay. The proposed POE dynamically adjusts the probabilities of constrained turns that may lead to deadlocks according to the current network conditions, and uses an efficient deadlock detection and recovery scheme when a deadlock happens. By adopting constrained turns adaptively to the network status, it not only reduces the frequency of deadlock and allows the network to be swiftly recovered when it occurs, but also greatly improves the degree of adaptiveness to obtain high network performance. Experimental results show that our method achieves a significant performance improvement both in terms of network throughput and average packet latency compared with the existing methods such as XY, odd---even, abacus turn model and fully adaptive routing algorithm while it only has moderate energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.