Abstract
By replacing the sigmoid activation function often used in neural networks with an exponential function, a probabilistic neural network (PNN) that can compute nonlinear decision boundaries which approach the Bayes optimal is formed. Alternate activation functions having similar properties are also discussed. A fourlayer neural network of the type proposed can map any input pattern to any number of classifications. The decision boundaries can be modified in real-time using new data as they become available, and can be implemented using artificial hardware “neurons” that operate entirely in parallel. Provision is also made for estimating the probability and reliability of a classification as well as making the decision. The technique offers a tremendous speed advantage for problems in which the incremental adaptation time of back propagation is a significant fraction of the total computation time. For one application, the PNN paradigm was 200,000 times faster than back-propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.