Abstract

A fuzzy artificial neural network (ANN)–based approach is proposed for reliability assessment of oil and gas pipelines. The proposed ANN model is trained with field observation data collected using magnetic flux leakage (MFL) tools to characterize the actual condition of aging pipelines vulnerable to metal loss corrosion. The objective of this paper is to develop a simulation‐based probabilistic neural network model to estimate the probability of failure of aging pipelines vulnerable to corrosion. The approach is to transform a simulation‐based probabilistic analysis framework to estimate the pipeline reliability into an adaptable connectionist representation, using supervised training to initialize the weights so that the adaptable neural network predicts the probability of failure for oil and gas pipelines. This ANN model uses eight pipe parameters as input variables. The output variable is the probability of failure. The proposed method is generic, and it can be applied to several decision problems related with the maintenance of aging engineering systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.