Abstract

Trajectory planning tasks for non-holonomic or collaborative systems are naturally modeled by state spaces with non-Euclidean metrics. However, existing proofs of convergence for sample-based motion planners only consider the setting of Euclidean state spaces. We resolve this issue by formulating a flexible framework and set of assumptions for which the widely-used PRM*, RRT, and RRT* algorithms remain asymptotically optimal in the non-Euclidean setting. The framework is compatible with collaborative trajectory planning: given a fleet of robotic systems that individually satisfy our assumptions, we show that the corresponding collaborative system again satisfies the assumptions and therefore has guaranteed convergence for the trajectory-finding methods. Our joint state space construction builds in a coupling parameter 1≤p≤∞, which interpolates between a preference for minimizing total energy at one extreme and a preference for minimizing the travel time at the opposite extreme. We illustrate our theory with trajectory planning for simple coupled systems, fleets of Reeds–Shepp vehicles, and a highly non-Euclidean fractal space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.