Abstract

Common spatial patterns (CSP) is a popular feature extraction method for discriminating between positive andnegative classes in electroencephalography (EEG) data.Two probabilistic models for CSP were recently developed: probabilistic CSP (PCSP), which is trained by expectation maximization (EM), and variational BayesianCSP (VBCSP) which is learned by variational approx-imation. Parameter expansion methods use auxiliaryparameters to speed up the convergence of EM or thedeterministic approximation of the target distributionin variational inference. In this paper, we describethe development of parameter-expanded algorithms forPCSP and VBCSP, leading to PCSP-PX and VBCSP-PX, whose convergence speed-up and high performanceare emphasized. The convergence speed-up in PCSP-PX and VBCSP-PX is a direct consequence of parame-ter expansion methods. The contribution of this study is the performance improvement in the case of CSP,which is a novel development. Numerical experimentson the BCI competition datasets, III IV a and IV 2ademonstrate the high performance and fast convergenceof PCSP-PX and VBCSP-PX, as compared to PCSP andVBCSP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.