Abstract

As a part of the Hybrid Intelligent Algorithm, a model based on an ANN (artificial neural network) has been proposed in this paper to represent hybrid system behaviour considering the uncertainty related to wind speed and solar radiation, battery bank lifetime, and fuel prices. The Hybrid Intelligent Algorithm suggests a combination of probabilistic analysis based on a Monte Carlo simulation approach and artificial neural network training embedded in a genetic algorithm optimisation model. The installation of a typical hybrid system was analysed. Probabilistic analysis was used to generate an input–output dataset of 519 samples that was later used to train the ANNs to reduce the computational effort required. The generalisation ability of the ANNs was measured in terms of RMSE (Root Mean Square Error), MBE (Mean Bias Error), MAE (Mean Absolute Error), and R-squared estimators using another data group of 200 samples. The results obtained from the estimation of the expected energy not supplied, the probability of a determined reliability level, and the estimation of expected value of net present cost show that the presented model is able to represent the main characteristics of a typical hybrid power system under uncertain operating conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.