Abstract
Using a probabilistic approximation of a mean-field mechanistic model of sheared systems, we analytically calculate the statistical properties of large failures under slow shear loading. For general shear F(t), the distribution of waiting times between large system-spanning failures is a generalized exponential distribution, ρ_{T}(t)=λ(F(t))P(F(t))exp[-∫_{0}^{t}dτλ(F(τ))P(F(τ))], where λ(F(t)) is the rate of small event occurrences at stress F(t) and P(F(t)) is the probability that a small event triggers a large failure. We study the behavior of this distribution as a function of fault properties, such as heterogeneity or shear rate. Because the probabilistic model accommodates any stress loading F(t), it is particularly useful for modeling experiments designed to understand how different forms of shear loading or stress perturbations impact the waiting-time statistics of large failures. As examples, we study how periodic perturbations or fluctuations on top of a linear shear stress increase impact the waiting-time distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.