Abstract
AbstractThe time to cover cracking is widely used as a service life indicator in the assessment of deterioration of corrosion‐affected reinforced concrete structures. This paper presents a general probabilistic procedure for prediction of time to cover cracking. Within this procedure, the response surface method (RSM) is employed to calibrate a new model for calculating of radial displacement required for cover cracking based on the results obtained from the finite element (FE) analysis. By taking advantage of the central limit theorem (CLT), simple but accurate probabilistic models for prediction of time to cover cracking that only rely on the knowledge of first and second moments of basic random variables are derived. Rigorous simulation analysis has proved the accuracy of these models. It is shown in the paper that using this probabilistic procedure, factors affecting randomness of time to cover cracking can be easily identified. It is also shown that the time to cover cracking is highly variable with the concrete cover, tensile strength of concrete, corrosion current density, and the model error as the most influential factors on its randomness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Structural Concrete
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.