Abstract
In this work, we propose a combinative strategy based on regression and clustering for solving point set matching problems under a Bayesian framework, in which the regression estimates the transformation from the model to the sceneand the clustering establishes the correspondence between two point sets. The point set matching model is illustrated by a hierarchical directed graph, and the matching uncertainties are approximated by a coarse-to-fine variational inference algorithm. Furthermore, two Gaussian mixtures are proposed for the estimation of heteroscedastic noise and spurious outliers, and an isotropic or anisotropic covariance can be imposed on each mixture in terms of the transformed model points. The experimental results show that the proposed approach achieves comparable performance to state-of-the-art matching or registration algorithms in terms of both robustness and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.