Abstract

As an extension of GA and GP, a new evolutionary algorithm named Genetic Network Programming (GNP) has been proposed. GNP uses the directed graph structure to represent its solutions, which can express the dynamic environment efficiently. The reusable nodes of GNP can construct compact structures, leading to a good performance in complex problems. In addition, a probabilistic model building GNP named GNP with Estimation of Distribution Algorithm (GNP-EDA) has been proposed to improve the evolution efficiency. GNP-EDA outperforms the conventional GNP by constructing a probabilistic model by estimating the probability distribution from the selected elite individuals of the previous generation. In this paper, a probabilistic model building GNP with multiple probability vectors (PMBGNP M ) is proposed. In the proposed algorithm, multiple probability vectors are used in order to escape from premature convergence, and genetic operations like crossover and mutation are carried out to the probability vectors to maintain the diversities of the populations. The proposed algorithm is applied to the controller of autonomous robots and its performance is evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.