Abstract
A probabilistic machine learning model is introduced to augment the k−ωSST turbulence model in order to improve the modelling of separated flows and the generalisability of learnt corrections. Increasingly, machine learning methods have been used to leverage experimental and high-fidelity simulation data, improving the accuracy of the Reynolds Averaged Navier–Stokes (RANS) turbulence models widely used in industry. A significant challenge for such methods is their ability to generalise to unseen geometries and flow conditions. Furthermore, heterogeneous datasets containing a mix of experimental and simulation data must be efficiently handled. In this work, field inversion and an ensemble of Gaussian Process Emulators (GPEs) is employed to address both of these challenges. The ensemble model is applied to a range of benchmark test cases, demonstrating improved turbulence modelling for cases involving separated flows with adverse pressure gradients, where RANS simulations are understood to be unreliable. Perhaps more significantly, the simulation reverted to the uncorrected model in regions of the flow exhibiting physics outside of the training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.