Abstract

Because many artificial intelligence applications require the ability to reason with uncertain knowledge, it is important to seek appropriate generalizations of logic for that case. We present here a semantical generalization of logic in which the truth values of sentences are probability values (between 0 and 1). Our generalization applies to any logical system for which the consistency of a finite set of sentences can be established. The method described in the present paper combines logic with probability theory in such a way that probabilistic logical entailment reduces to ordinary logical entailment when the probabilities of all sentences are either 0 or 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.