Abstract

Abstract Many engineers effect “probabilistic life prediction” by replacing constants with probability distributions and carefully modeling the physical relationships among the parameters. Surprisingly, the statistical relationships among the “constants” are often given short shrift, if not ignored altogether. Few recognize that while this simple substitution of distributions for constants will indeed produce a nondeterministic result, the corresponding “probabilities” are often woefully inaccurate. In fact, even the “trend” can be wrong, so these results can't even be used for sensitivity studies. This paper explores the familiar Paris equation relating crack growth rate and applied stress intensity to illustrate many statistical realities that are often ignored by otherwise careful engineers. Although the examples are Monte Carlo, the lessons also apply to other methods of probabilistic life prediction, including FORM/SORM (First/Second Order Reliability Method) and related “fast probability integration” methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.