Abstract

The understanding of internal processes that affect the changes of consistency of soft tissue is a challenging problem. An ultrasound-monitoring Petri dish has been designed to monitor the evolution of relevant mechanical parameters during engineered tissue formation processes in real time. A better understanding of the measured ultrasonic signals required the use of numerical models of the ultrasound-tissue interactions. The extraction of relevant data and its evolution with sufficient sensitivity and accuracy is addressed by applying well-known signal processing techniques to both the experimental and numerically predicted measurements. In addition, a stochastic model-class selection formulation is used to rank which of the proposed interaction models are more plausible. The sensitivity of the system is verified by monitoring a gelation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.