Abstract
This work presents a new methodology to obtain probabilistic interval predictions of a dynamical system. The proposed strategy uses stored past system measurements to estimate the future evolution of the system. The method relies on the use of dissimilarity functions to estimate the conditional probability density function of the outputs. A family of empirical probability density functions, parameterized by means of two scalars, is introduced. It is shown that the proposed family encompasses the multivariable normal probability density function as a particular case. We show that the presented approach constitutes a generalization of classical estimation methods. A validation scheme is used to tune the two parameters on which the methodology relies. In order to prove the effectiveness of the presented methodology, some numerical examples and comparisons are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.