Abstract

Deep learning plays an important role in the field of machine learning. However, deterministic methods such as neural networks cannot capture the model uncertainty. Bayesian neural network (BNN) are recently under consideration since Bayesian models provide a theoretical framework to infer model uncertainty. Since it is often difficult to find an analytical solution for BNNs, an effective and efficient approximate inference method is very important for model training and prediction. The generalized version of expectation propagation (GEP) was recently proposed and considered a powerful approximate inference method, which is based on the minimization of Kullback–Leibler (KL) divergence of the true posterior and the approximate distributions. In this paper, we further instantiate the GEP to provide an effective and efficient approximate inference method for BNNs. We assess this method on BNNs including fully connected neural networks and convolutional neural networks on multiple benchmark datasets and show a better performance than some state-of-the-art approximate inference methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.