Abstract

Tasks that require many sequential decisions or complex solutions are hard to solve using conventional reinforcement learning algorithms. Based on the semi Markov decision process setting (SMDP) and the option framework, we propose a model which aims to alleviate these concerns. Instead of learning a single monolithic policy, the agent learns a set of simpler sub-policies as well as the initiation and termination probabilities for each of those sub-policies. While existing option learning algorithms frequently require manual specification of components such as the sub-policies, we present an algorithm which infers all relevant components of the option framework from data. Furthermore, the proposed approach is based on parametric option representations and works well in combination with current policy search methods, which are particularly well suited for continuous real-world tasks. We present results on SMDPs with discrete as well as continuous state-action spaces. The results show that the presented algorithm can combine simple sub-policies to solve complex tasks and can improve learning performance on simpler tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.