Abstract
The advent and availability of technology has brought us closer than ever through social networks. Consequently, there is a growing emphasis on mining social networks to extract information for knowledge and discovery. However, methods for social network analysis (SNA) have not kept pace with the data explosion. In this review, we describe directed and undirected probabilistic graphical models (PGMs), and highlight recent applications to social networks. PGMs represent a flexible class of models that can be adapted to address many of the current challenges in SNA. In this work, we motivate their use with simple and accessible examples to demonstrate the modeling and connect to theory. In addition, recent applications in modern SNA are highlighted, including the estimation and quantification of importance, propagation of influence, trust (and distrust), link and profile prediction, privacy protection, and news spread through microblogging. Applications are selected to demonstrate the flexibility and predictive capabilities of PGMs in SNA. Finally, we conclude with a discussion of challenges and opportunities for PGMs in social networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.