Abstract
We show that there are at most $O_{n,\epsilon}(H^{n-2+\sqrt{2}+\epsilon})$ monic integer polynomials of degree $n$ having height at most $H$ and Galois group different from the full symmetric group $S_n$, improving on the previous 1973 world record $O_{n}(H^{n-1/2}\log H)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.