Abstract
We study the irreducibility and Galois group of random polynomials over function fields. We prove that a random polynomial f=yn+∑i=0n−1ai(x)yi∈Fq[x][y] with i.i.d. coefficients ai taking values in the set {a(x)∈Fq[x]:dega≤d} with uniform probability, is irreducible with probability tending to 1−1qd as n→∞, where d and q are fixed. We also prove that with the same probability, the Galois group of this random polynomial contains the alternating group An. Moreover, we prove that if we assume a version of the polynomial Chowla conjecture over Fq[x], then the Galois group of this polynomial is actually equal to the symmetric group Sn with probability tending to 1−1qd. We also study the other possible Galois groups occurring with positive limit probability. Finally, we study the same problems with n fixed and d→∞.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.