Abstract

The standard stress-based approach to fatigue relies on the use of S–N curves, which are obtained by applying cyclic loading of constant amplitude S to identical and standardised specimens until they fail. For some reference probability p, the S–N curve indicates the number of cycles N at which a proportion p of specimens have failed. Based on these curves, Miner’s rule is a widely employed method which yields a predicted number of cycles to failure of a specimen subjected to cyclic loading with variable amplitude. The first main contribution of this article is to introduce a probabilistic model for the number of cycles to failure and to show that, under mild assumptions, the deterministic number returned by Miner’s rule is the quantile of order p of this random number of cycles to failure, which demonstrates the consistency of our formulation with standard approaches. Our formulation is based on the introduction of the notion of health of a specimen. Explicit formulas are derived in the case of the Weibull–Basquin model. We next turn to the case of a complete mechanical structure: taking into account size effects, and using the weakest link principle, we establish formulas for the survival probability of the structure. We illustrate our results by numerical simulations on a I-steel beam, for which we compute survival probabilities and density of failure point. We also show how to efficiently approximate these quantities using the Laplace method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call