Abstract

ABSTRACT Researches on hydrologic extreme events have great significance in reducing and avoiding the severe losses and impacts caused by natural disasters. When forecasting hydrologic design values of the hydrologic extreme events of interest by the conventional hydrologic frequency analysis (HFA) model, the results cannot take uncertainties and risks into account. In this article, in order to overcome conventional HFA model's disadvantages and to improve hydrologic design values’ forecast results, an improved HFA model named AM-MCMC-HFA is proposed by employing the AM-MCMC algorithm (adaptive Metropolis-Markov chain Monte Carlo) to HFA process. Differing with conventional HFA model, which is seeking single optimal forecast result, the AM-MCMC-HFA model can not only get the optimal but also the probabilistic forecast results of hydrologic design values. By applying to two obviously different hydrologic series, the performances of the model proposed have been verified. Analysis results show that four factors have great influence on hydrologic design values’ reliability, and also indicate that AM-MCMC-HFA has the ability of assessing the uncertainties of parameters and hydrologic design values. Therefore, by using the AM-MCMC-HFA model, hydrologic designs tasks can be operated more reasonably, and more rational decisions can be made by governmental decision-makers and public in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.