Abstract

Sparse Bayesian learning is a state-of-the-art supervised learning algorithm that can choose a subset of relevant samples from the input data and make reliable probabilistic predictions. However, in the presence of high-dimensional data with irrelevant features, traditional sparse Bayesian classifiers suffer from performance degradation and low efficiency due to the incapability of eliminating irrelevant features. To tackle this problem, we propose a novel sparse Bayesian embedded feature selection algorithm that adopts truncated Gaussian distributions as both sample and feature priors. The proposed algorithm, called probabilistic feature selection and classification vector machine (PFCVM LP ) is able to simultaneously select relevant features and samples for classification tasks. In order to derive the analytical solutions, Laplace approximation is applied to compute approximate posteriors and marginal likelihoods. Finally, parameters and hyperparameters are optimized by the type-II maximum likelihood method. Experiments on three datasets validate the performance of PFCVM LP along two dimensions: classification performance and effectiveness for feature selection. Finally, we analyze the generalization performance and derive a generalization error bound for PFCVM LP . By tightening the bound, the importance of feature selection is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.