Abstract

In this paper, we focus on the optimal operation of a multi-agent system affected by uncertainty. In particular, we consider a cooperative setting where agents jointly optimize a performance index compatibly with individual constraints on their discrete and continuous decision variables and with coupling global constraints. We assume that individual constraints are affected by uncertainty, which is known to each agent via a private set of data that cannot be shared with others. Exploiting tools from statistical learning theory, we provide data-based probabilistic feasibility guarantees for a (possibly sub-optimal) solution of the multi-agent problem that is obtained via a decentralized/distributed scheme that preserves the privacy of the local information. The generalization properties of the data-based solution are shown to depend on the size of each local dataset and on the complexity of the uncertain individual constraint sets. Explicit bounds are derived in the case of linear individual constraints. A comparative analysis with the cases of a common dataset and of local uncertainties that are independent is performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.