Abstract

Bayesian-formulated neural network architecture is implemented using a hybrid Monte Carlo method for probabilistic fault identification in a population of ten nominally identical cylindrical shells using vibration data. Each cylinder is divided into three substructures. Holes of 12 mm in diameter are introduced in each of the substructures. Vibration data are measured by impacting the cylinders at selected positions using a modal hammer and measuring the acceleration responses at a fixed position. Modal energies, defined as the integrals of the real and imaginary components of the frequency response function over 12-Hz frequency bandwidths, are extracted and transformed into the coordinate modal energy assurance criterion. This criterion and the identity of faults are used to train the frequency response function (FRF) neural network. Modal analysis is then employed to identify modal properties. Mode shapes are transformed into the coordinate modal assurance criterion. The natural frequencies and the coordinate modal assurance criterion, as well as the identities of faults, are utilized to train the modal-property neural network. The weighted average of the modal-property network and the FRF network form a committee of two networks. The committee approach is observed to give lower mean square errors and standard deviations (thus, a higher probability of giving the correct solution) than the individual methods. This approach gives accurate identities of damage and their respective confidence intervals while requiring affordable computational resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.