Abstract

Marine riser is an important component of oil and gas drilling and production system. It is essentially a slender pipe conveying fluid between well-head and floating production unit. They are formed out of three basic types of configuration namely, free hanging, “lazy-wave (SWLR)” riser. Risers are subjected to varied static, quasi-static and dynamic forces. For the safety of design, the behavior of the riser under these forces is thoroughly investigated. 3D Nonlinear dynamic analysis of riser is obtained in the time domain using finite element software package ABAQUS/Aqua. The response histories so obtained are employed for the study of fatigue reliability analyses of riser. It is based on a bi-linear relationship to model fatigue crack growth and incorporates a failure criterion to describe the interaction between fracture and plastic collapse. Uncertainty modeling, especially of fatigue crack growth parameters, is undertaken using bi-linear crack growth relationship. Results pertaining to fatigue reliability and fatigue crack size evolution are presented using Monte Carlo Simulation. The bi-linear crack growth models are found to lead to higher fatigue life estimation. Sensitivity behavior pertinent to limit state adopted has been thoroughly investigated. These findings implicate inspection schemes for components of the marine structures to ensure minimization of the surprises due to wide scatter of the fatigue phenomenon in marine environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call