Abstract
This technical note investigates the problem of extended dissipative finite-time control for Markov jump systems (MJSs) with cyber-attacks and actuator failures. A probabilistic event-triggered mechanism (PETM) is proposed to relieve the communication burden by exploiting both the pattern variation of triggering thresholds and the time-varying characteristic of transmission delays. To characterize the actual control inputs, a stochastic actuator failure model (SAFM) is established using a random variable of any discrete-time distribution over [0,1]. Firstly, based on the PETM and SAFM, static output feedback controllers are devised which may not switch with the system synchronously. Then, novel sufficient conditions with less conservatism are obtained to achieve the extended dissipative finite-time control performance of the closed-loop system under admissible cyber-attacks and actuator failures. Furthermore, controller gains with non-convex constraints are calculated with the aid of a newly proposed lemma. Finally, an application oriented example is provided to verify the effectiveness and superiority of the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.