Abstract

Weather and climate extremes, such as droughts and hot extremes, may result in marked damages to crop yields and threaten regional and global food security. Understanding the relationship between climate extremes and crop yields is of critical importance for food security under a changing climate. The objective of this study is to investigate the probabilistic variability of maize yields with respect to compound dry-hot events, which has been shown to be more stressful to crops compared with individual dry or hot events. A multivariate model is first constructed to model the joint behavior of the dry condition, hot condition, and crop yields. The response of crop yields under different dry, hot, and compound dry-hot conditions at national and global scales is then investigated based on the conditional distribution. For the major maize producing countries (top 5), the probability of maize yield reduction could increase by from 0.07 to 0.31 (from 0.04 to 0.31) when the individual extreme drought (extreme hot) conditions changed to compound dry-hot conditions. The probabilistic evaluation of compound dry-hot events' impacts on maize yields is expected to provide useful insights for the mitigation of compound events and their impacts under a changing climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.