Abstract

Purpose This study aims to introduce a methodology for optimal allocation of spinning reserves taking into account load, wind and solar generation by application of the univariate and bivariate parametric models, conventional intra and inter-zonal spinning reserve capacity as well as demand response through utilization of capacity outage probability tables and the equivalent assisting unit approach. Design/methodology/approach The method uses a novel approach to model wind power generation using the bivariate Farlie–Gumbel–Morgenstern probability density function (PDF). The study also uses the Bayesian network (BN) algorithm to perform the adjustment of spinning reserve allocation, based on the actual unit commitment of the previous hours. Findings The results show that the utilization of bivariate wind prediction model along with reserve allocation adjustment algorithm improve reliability of the power grid by 2.66% and reduce the total system operating costs by 1.12%. Originality/value The method uses a novel approach to model wind power generation using the bivariate Farlie–Gumbel–Morgenstern PDF. The study also uses the BN algorithm to perform the adjustment of spinning reserve allocation, based on the actual unit commitment of the previous hours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call