Abstract
Site characterization based on measurements is essential for geological and geotechnical engineering. However, measurements are usually limited and sparse because of many limitations, which can hardly be utilized to perform a well site characterization. Therefore, some data fusion methods are commonly utilized to integrate correlated data to improve the performance of site characterization. Among data fusion methods, cokriging is widely utilized to improve the performance of site characterization by integrating measurements of correlated variables. The correlation between correlated variables is expressed by a cross-variogram, which can only be calculated using co-located measurements between correlated variables. However, the measurements in geological and geotechnical engineering are commonly obtained by destructive sampling, which are usually not co-located and cannot be utilized to calculate the cross-variogram. In this study, a Bayesian inference method is developed to tackle this difficulty. The proposed method is illustrated and validated by two real datasets. The results show that the proposed method can estimate a well cross-variogram model, no matter whether the measurements of correlated variables are co-located or not. Moreover, the uncertainty of variogram models and cokriging estimation can be quantified by the proposed method. The proposed method can improve the wide utilization of the cokriging method, which can help characterize geology conditions of geological and geotechnical engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.