Abstract
This paper presents a probabilistic upscaling of mechanics models. A reduced-order probabilistic model is constructed as a coarse-scale representation of a specified fine-scale model whose probabilistic structure can be accurately determined. Equivalence of the fine- and coarse-scale representations is identified such that a reduction in the requisite degrees of freedom can be achieved while accuracy in certain quantities of interest is maintained. A significant stochastic model reduction can a priori be expected if a separation of spatial and temporal scales exists between the fine- and coarse-scale representations. The upscaling of probabilistic models is subsequently formulated as an optimization problem suitable for practical computations. An illustration in stochastic structural dynamics is provided to demonstrate the proposed framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.