Abstract

AbstractResearch into network dynamics of spreading processes typically employs both discrete and continuous time methodologies. Although each approach offers distinct insights, integrating them can be challenging, particularly when maintaining coherence across different time scales. This review focuses on the Microscopic Markov Chain Approach (MMCA), a probabilistic f ramework originally designed for epidemic modeling. MMCA uses discrete dynamics to compute the probabilities of individuals transitioning between epidemiological states. By treating each time step—usually a day—as a discrete event, the approach captures multiple concurrent changes within this time frame. The approach allows to estimate the likelihood of individuals or populations being in specific states, which correspond to distinct epidemiological compartments. This review synthesizes key findings from the application of this approach, providing a comprehensive overview of its utility in understanding epidemic spread.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.