Abstract

Statistical models of real world data typically involve continuous probability distributions such as normal, Laplace, or exponential distributions. Such distributions are supported by many probabilistic modelling formalisms, including probabilistic database systems. Yet, the traditional theoretical framework of probabilistic databases focuses entirely on finite probabilistic databases. Only recently, we set out to develop the mathematical theory of infinite probabilistic databases. The present paper is an exposition of two recent papers which are cornerstones of this theory. In (Grohe, Lindner; ICDT 2020) we propose a very general framework for probabilistic databases, possibly involving continuous probability distributions, and show that queries have a well-defined semantics in this framework. In (Grohe, Kaminski, Katoen, Lindner; PODS 2020) we extend the declarative probabilistic programming language Generative Datalog, proposed by (B´ar´any et al. 2017) for discrete probability distributions, to continuous probability distributions and show that such programs yield generative models of continuous probabilistic databases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.