Abstract

We show that a large class of pulse-coupled oscillators converge with high probability from random initial conditions on a large class of graphs with time delays. Our analysis combines previous local convergence results, probabilistic network analysis, and a classification scheme for type-II phase response curves to produce rigorous lower bounds for convergence probabilities based on network density. These results suggest methods for the analysis of pulse-coupled oscillators, and provide insights into the balance of excitation and inhibition in the operation of biological type-II phase response curves and also the design of decentralized and minimal clock synchronization schemes in sensor nets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call