Abstract
We describe an extension of the ZENO program for polymer and nanoparticle characterization that allows for precise calculation of the virial coefficients, with uncertainty estimates, of polymeric structures described by arbitrary rigid configurations of hard spheres. The probabilistic method of virial computation used for this extension employs a previously developed Mayer-sampling Monte Carlo method with overlap sampling that allows for a reduction of bias in the Monte Carlo averaging. This capability is an extension of ZENO in the sense that the existing program is also based on probabilistic sampling methods and involves the same input file formats describing polymer and nanoparticle structures. We illustrate the extension's capabilities, demonstrate its accuracy, and quantify the efficiency of this extension of ZENO by computing the second, third, and fourth virial coefficients and metrics quantifying the difficulty of their calculation, for model polymeric structures having several different shapes. We obtain good agreement with literature estimates available for some of the model structures considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.